INDIAN INSTITUTE OF TECHNOLOGY HYDERABAD

DEPARTMENT OF MATHEMATICS

Assignment 1

MA 4020 : Linear algebra	Max Marks: 65

- 1. Show that the set of all positive real numbers forms a vector space over \mathbb{R} if the sum of *x* [5] and *y* is defined to be the usual product *xy* and α times *x* is defined to be x^{α} .
- 2. Consider the vectors $x_1 = (1, 3, 2)$ and $x_2 = (-2, 4, 3)$ in \mathbb{R}^3 . Show that the span of $\{x_1, x_2\}$ [5] is $\{(y_1, y_2, y_3) \in \mathbb{R}^3 : y_1 7y_2 + 10y_3 = 0\}$. Show that the subspace can also be written as

$$\{(\alpha,\beta,(-\alpha+7\beta)/10):\alpha,\beta\in\mathbb{R}\}\$$

- 3. (a) Show that, for any set $A \subset V$, Sp(A) is the intersection of all subspaces of V containing [3] *A*.
 - (b) Let *S* and *T* be subspaces of *V*. Then prove that $S \cup T$ is a subspace if and only if either [2] $S \subseteq T$ or $T \subseteq S$.
- 4. Find all maximal linearly independent subset of $\{x_1, x_2, ..., x_5\}$ where $x_1 = (1, 1, 0, 1), x_2 = [5]$ $(1, 2, -1, 0), x_3 = (1, 0, 1, 2), x_4 = (0, 1, 1, 1)$ and $x_5 = (2, 0, 2, 4)$ in \mathbb{R}^4 .
- 5. If Sp(A) = S, then show that no proper subset of A generates S if and only if A is linearly [5] independent.
- 6. (a) For what values of $\alpha \in \mathbb{R}$ are the vectors $(0, 1, \alpha)$, $(\alpha, 1, 0)$, and $(1, \alpha, 1)$ in \mathbb{R}^3 are linearly independent.
 - (b) Determine all the values of α, β for which the vectors (α, β, β, β), (β, β, α, β), (β, β, α, β) and (β, β, β, α) of ℝ⁴ are linearly dependent.
- 7. Show that $f_1(t) = 1$, $f_2(t) = t 2$ and $f_3(t) = (t 2)^2$ form a basis for \mathcal{P}_3 , where \mathcal{P}_3 is the all polynomials of degree ≤ 2 . Express $3t^2 5t + 4$ as a linear combination of f_1, f_2, f_3 . [5]
- 8. Extend $A = \{1, 1, 1..., 1\}$ to a basis of \mathbb{R}^{n} .
- 9. Find a basis for each of the following subspaces of \mathbb{R}^4 .
 - (a) $S_1 = \{(x_1.x_2, x_3, x_4) : x_1 2x_3 + x_4 = 0\}$ [2] (b) $S_2 = \{(x_1.x_2, x_3, x_4) : x_1 + x_2 - x_3 = 0, x_2 + 2x_3 - x_4 = 0, 2x_1 + 3x_2 - x_4 = 0\}.$ [3]
- 10. Let *F* be a finite field with *q* elements and *V* an *n*-dimensional vector space over *F*. Show [5] that $|V| = q^n$.
- 11. Let *S*, *T* and *W* be subspaces. If $W \subseteq T$, prove that $S + W \subseteq S + T$. Is the converse true? [5] When is $S + T = S \cup T$.
- 12. Let *S* and *T* be subspaces of a vector space *V* with d(S) = 2, d(T) = 3 and d(V) = 5. Find [5] the minimum and maximum possible values of d(S + T) and show that every (integer) value between these can be attained.
- 13. Let *S* and *T* be subspaces of \mathbb{R}^4 given by

$$S = \{(x_1, x_2, x_3, x_4) : 3x_1 + x_2 + x_3 + x_4 = 0, x_1 - x_3 + 2x_4 = 0\}$$

and

$$T = \{(x_1, x_2, x_3, x_4) : 5x_1 + 2x_2 + 3x_3 = 0, x_1 - x_3 + x_4 = 0\}$$

- (a) Obtain a basis each for $S \cap T$, S, T and S + T.
- (b) Verify the modular law for *S* and *T*.
- (c) Extend the basis of S + T you obtained in (a) to form a basis for \mathbb{R}^4 .
- (d) Express S + T and $S \cap T$ in the same form as S and T.

[5]

[5]

[5]